
BasisTech
Studio for startups

Chris Biow
Technologist in Residence
25 March 2024



Under the Hood 
of a Large Language Model
A visual exploration, 
requiring only basic arithmetic

Based on Brendan Bycroft’s 
LLM Visualization
https://bbycroft.net/llm 

https://bbycroft.net/llm


Why Taylor Swift canʼt authenticate
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The Why
of Why Things Work
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● Sheer curiosity
● Comprehend the layers of abstraction

○ Abstraction enables simplified reasoning 
○ Simplification loses detail

■ Insight into capabilities and behavior
■ Anticipate risks

○ Lower layers donʼt matter until they do
■ Ability to analyze and comprehend what goes wrong
■ Understand reasons for costs and performance
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Why should we understand our underlying tech?



● LLM
● Processing steps

○ Embedding
○ Transformer
○ Normalization

● Training 
○ Gradient descent, hyperparameters, convergence, grokking
○ Math: calculus, statistics, linear algebra
○ Data: just text, unsupervised

● Inferencing
○ Math: addition, multiplication (square root, logarithm/exponent)
○ Data structures: tables; columns and rows
○ Toy problem

■ reverse-sort tokens in a vocabulary consisting of letters A, B, C 
■ C B A B B C ➔ C C B B B A 
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Our layers of abstraction for LLMs



Abstraction Layer 0:
LLMs 

by parameter size,
visualizing structural complexity
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1,760 billion parameters

GPT-4

https://web.archive.org/web/20230712123915/https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/


Simplify: 10X
175 billion parameters



Simplify: 100X



Simplify: 10X





Simplify: 1500X           



Abstraction Layer 1:
Neural Components
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1. Embedding
2. Transformer
3. Normalization
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Key components of LLM



Embedding

● Input dimensions = vocabulary size (V)
○ English; V ≅ 1M
○ Toy problem [ABC]; V = 3 

● Create a “one-hot” column of Booleans, size V
○ “bottle” = (0, 0, 0, …, 0, 0, 1, 0, 0, … 0)

■ 1M dimensions; invokes the “curse of dimensionality”

○ “B” = (0, 1, 0)
■ 3 dimensions

● Reduce to convenient (uncursed) dimensions of Real values
○ English ➔ ~300 dimensions 

■ “bottle” = (0.000183, 0.00690, …, 0.0152)

○ [ABC] ➔ 48 dimensions 
■ B = (0.000343, 0.00234, …, 0.1436)
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● Useful semantics in a tractable number of dimensions
○ king − man + woman ≅ queen
○ king ≅ König ≅ rey ≅  国王 [guówáng]

● LLM usage
○ Create table with T columns

■ One for each token of input

○ For each token, look up its embedding
■ Column of length 48 / 300
■ Add the column to token embedding table
■ Also create  position embedding table
■ Input embedding: sum token embedding with position embedding

 

Why embeddings?
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Transformer

● Attention is all you need [v1: June 2017] 
https://arxiv.org/abs/1706.03762 

○ RNN, CNN
○ Language translation application

■ 28.4 BLEU English ➔ German

○ Generalization
■ English constituency parsing (CFG)

○ Lots more!
● Four steps

1. Layer normalization
2. Self-attention
3. Projection
4. Feed-forward, 

multi-layer perceptron
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https://arxiv.org/abs/1706.03762


Toy LLM Problem
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Modern LLM Toy

Words in vocabulary ~1M 3

Embedding dimensions ~300 48

Context window (tokens) 8–128K 11

Transformers ~150 3

Attention heads 9,216 3 x 3

Parameters 1.7T 86K



Abstraction Layer 2:
Transformer Operation
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Transformer Step 1: Layer normalization

● Scale the columns of input embedding
● For each of the T=11 columns (of n=48 rows) 

○ Calculate
■ Average = sum() / n = µ 
■ Standard Deviation (SD)= √sum[(x-µ)2]/n) = σ

○ For each cell x: (x−µ)/σ
○ Column avg now 0, SD 1
○ Scale with weight (γ), bias (β) values
○ x × γ + β
○ Column avg now β; SD γ

● Proceed to three parallel self-attention heads
○ Breaks up the space into dimensional chunks
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Transformer Step 2a: Self-attention computation

● Three precomputed model Weight tables
○ Q(query), K(key), V(value)
○ Each table has a column of bias values

● For each of the T columns of normalized input
○ For each of [Q, K, V] tables

■ Multiply table by column
■ For each row

● Dot-product(•)
○ pair up elements
○ multiply each pair
○ add up the products

● Add the bias for that row

○ Creates tables of Query, Key, Value vectors
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Transformer Step 2b: Self-attention query execution

● Build the attention matrix A
○ vectors Q • K

■ Dot product (scales by similarity of vectors)
■ Looks back over all past input columns/tokens
■ Weights the amount of attention paid to them 

in context of the current token

● Scale A by √(column length)
● Softmax the columns of A: make the values add up to 1. (See final slide) 
● Softmax(A) • V vector: produces V Output
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Transformer Step 3: Projection

● Stack the V Outputs from each of the multiple attention heads, appending the columns, 
producing Attention Output

● Apply Projection Weights and Projection Bias to Attention Output
● Add the original input embedding back in to this result, producing Attention Residual

○ Feeding forward the input is another type of normalization
○ Essential for convergence 

during learning
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Transformer Step 4: Multi-Layer Perceptron (MLP)

● Normalize (µ, σ) and bias (β, γ) to scale average & standard deviation
● MLP: 2-layer neural network

○ GELU “activation” function
○ Project with a bias vector, collapsing the headsʼ output

● Add the MLP input back in
○ Feed forward normalization

● This “MLP residual” is the transformer output
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Gaussian Error 
Linear Unit (GELU)

function





Transformer iteration

● Feed from each transformer into the next
● Our nano-gpt uses 3 transformers (each with three heads)
● Transformers specialize as they proceed

○ Lower-level feature extraction
 to

○ Higher-level abstractions & relationships
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Final Normalization

● Input from final transformer layer
● Normalize (µ, σ) and bias (β, γ) to scale avg & SD
● Final multiplication 

○ Scales columns back out to the length of the vocabulary
○ Elements are “logits”
○ Log-probability of the token occurring, summing up to 1

● Final Softmax creates output table
● Choose a path over its columns to produce output

○ Most likely (give me one answer!)
○ Probabilistic / uniform (check veracity later)
○ Temperature parameter 

(sliding scale of likely vs. uniform)
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● Vector (row or column) should add up to 1, like probabilities
● For each value

○ Exponentiate
■ All positive values

○ Subtract largest value 
■ All negative, except largest, which is now 0
■ Avoids float overflows on division

○ Divide by sum
■ Positive again
■ Adds up to 1
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Softmax: why / what



Let’s go do it!
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https://bbycroft.net/llm
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Resources
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● All credit to Brendan Bycroft
● LLM visualization: https://bbycroft.net/llm 
● Visualization project: https://github.com/bbycroft/llm-viz/tree/main/src/llm 

https://bbycroft.net/
https://bbycroft.net/llm
https://github.com/bbycroft/llm-viz/tree/main/src/llm

