BasisTech

Studio for startups

Chris Biow

Technologist in Residence
25 March 2024

Under the Hood
 of a Large Language Model

A visual exploration, requiring only basic arithmetic

Based on Brendan Bycroft's
LLM Visualization
https://bbycroft.net/llm

SwiftOnSecurity @SwiftOnSecurity

One time I tried to explain Kerberos to someone. Then we both didn't understand it.

13:00 • 11/21/14

Why Taylor Swift can't authenticate

The Why of Why Things Work

Why should we understand our underlying tech?

- Sheer curiosity
- Comprehend the layers of abstraction
- Abstraction enables simplified reasoning
- Simplification loses detail
- Insight into capabilities and behavior
- Anticipate risks
- Lower layers don't matter until they do
- Ability to analyze and comprehend what goes wrong
- Understand reasons for costs and performance

Our layers of abstraction for LLMs

- LLM
- Processing steps
- Embedding
- Transformer
- Normalization
- Training
- Gradient deseent, hyperparameters, convergence, grokking
- Math: calculus, statistics, linearalgebra
- Data: just text, unsupervised
- Inferencing
- Math: addition, multiplication (square root, logarithm/exponent)
- Data structures: tables; columns and rows
- Toy problem
- reverse-sort tokens in a vocabulary consisting of letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$
- $C B A B B C \rightarrow C C B B B A$

Abstraction Layer 0: LLMs

by parameter size, visualizing structural complexity

GPT-4

1,760 billion parameters

GPT-3

n_params $=174,591,676,416$

Simplify: 10X
 175 billion parameters

GPT-2 (small)
n_params $=124,439,808$
Simplify: 10X
nano-gpt
nparams $=85,584$

GPT-2 (XL) Uneme 1,557,11,200

GPT-2 (small)
n_params $=124,439,808$

nano-gpt
n.params $=85,584$

Abstraction Layer 1: Neural Components

Key components of LLM

1. Embedding
2. Transformer
3. Normalization

Embedding

- Input dimensions = vocabulary size (V)
- English; $\mathrm{V} \cong 1 \mathrm{M}$
- Toy problem [ABC]; V=3
- Create a "one-hot" column of Booleans, size V
- "bottle" $=(0,0,0, \ldots, 0,0, \mathbf{1}, 0,0, \ldots 0)$
- 1 M dimensions; invokes the "curse of dimensionality"
- "B" $=(0, \mathbf{1}, 0)$
- 3 dimensions
- Reduce to convenient (uncursed) dimensions of Real values
- English \rightarrow ~300 dimensions
- "bottle" $=(0.000183,0.00690, \ldots, 0.0152)$
- $\quad[\mathrm{ABC}] \rightarrow 48$ dimensions
- $\mathrm{B}=(0.000343,0.00234, \ldots, 0.1436)$

Why embeddings?

- Useful semantics in a tractable number of dimensions
- king - man + woman \cong queen
- king \cong König \cong rey \cong 国王 [guówáng]
- LLM usage
- Create table with T columns
- One for each token of input
- For each token, look up its embedding
- Column of length 48 / 300
- Add the column to token embedding table
- Also create position embedding table
- Input embedding: sum token embedding with position embedding

Transformer

- Attention is all you need [v1: June 2017]
https://arxiv.org/abs/1706.03762
- RNA,CNA
- Language translation application - 28.4 BLEU English \rightarrow German
- Generalization
- English constituency parsing (CFG)
- Lots more!
- Four steps

1. Layer normalization
2. Self-attention
3. Projection
4. Feed-forward, multi-layer perceptron

Toy LLM Problem

	Modern LLM	Toy
Words in vocabulary	$\sim 1 \mathrm{M}$	3
Embedding dimensions	~ 300	48
Context window (tokens)	$8-128 \mathrm{~K}$	11
Transformers	~ 150	3
Attention heads	9,216	3×3
Parameters	1.7 T	86 K

Abstraction Layer 2: Transformer Operation

Transformer Step 1: Layer normalization

- Scale the columns of input embedding
- For each of the $\mathrm{T}=11$ columns (of $\mathrm{n}=48$ rows)
- Calculate
- Average $=\operatorname{sum}() / n=\mu$
- Standard Deviation $\left.(S D)=\sqrt{ } \operatorname{sum}\left[(x-\mu)^{2}\right] / n\right)=\sigma$
- For each cell $x:(x-\mu) / \sigma$
- Column avg now 0, SD 1
- Scale with weight (γ), bias (β) values
- $x \times \gamma+\beta$
- Column avg now β; SD γ
- Proceed to three parallel self-attention heads
- Breaks up the space into dimensional chunks

Transformer Step 2a: Self-attention computation

- Three precomputed model Weight tables
- Q(query), K(key), V(value)
- Each table has a column of bias values
- For each of the T columns of normalized input
- For each of [Q, K, V] tables
- Multiply table by column
- For each row
- Dot-product(•)
- pair up elements
- multiply each pair
- add up the products
- Add the bias for that row
- Creates tables of Query, Key, Value vectors

K vectors
Vectors

V vectors

Q vectors
V Bias

V Weights

Transformer Step 2b: Self-attention query execution

- Build the attention matrix A
- vectors Q•K
- Dot product (scales by similarity of vectors)
- Looks back over all past input columns/tokens
- Weights the amount of attention paid to them
in context of the current token
- Scale A by $\sqrt{ }$ (column length)
- Softmax the columns of A: make the values add up to 1 . (See final slide)
- Softmax $(\mathrm{A}) \cdot \mathrm{V}$ vector: produces V Output
the USS Ronald Reagan an aircraft carrier docked in Japan-during
his tour of the region, vowing to "defeat any attack and meet any
use of conventional or nuclear weapons with an overwhelming and
effective American response". North Korea and the US have ratcheted
up tensions in recent weeks and the movement of the strike group had
raised the question of a pre-emptive strike by the US. On Wednesday,
Mr Pence described the country as the "most dangerous and urgent
threat to peace and security" in the Asia-Pacific.

Transformer Step 3: Projection

- Stack the V Outputs from each of the multiple attention heads, appending the columns, producing Attention Output
- Apply Projection Weights and Projection Bias to Attention Output
- Add the original input embedding back in to this result, producing Attention Residual
- Feeding forward the input is another type of normalization
- Essential for convergence during learning

Transformer Step 4: Multi-Layer Perceptron (MLP)

- Normalize (μ, σ) and bias (β, γ) to scale average \& standard deviation
- MLP: 2-layer neural network
- GELU "activation" function
- Project with a bias vector, collapsing the heads' output
- Add the MLP input back in
- Feed forward normalization
- This "MLP residual" is the transformer output

Gaussian Error

Linear Unit (GELU) function

Transformer iteration

- Feed from each transformer into the next
- Our nano-gpt uses 3 transformers (each with three heads)
- Transformers specialize as they proceed
- Lower-level feature extraction
to
- Higher-level abstractions \& relationships

Final Normalization

- Input from final transformer layer
- Normalize (μ, σ) and bias (β, γ) to scale avg \& SD
- Final multiplication
- Scales columns back out to the length of the vocabulary
- Elements are "logits"
- Log-probability of the token occurring, summing up to 1
- Final Softmax creates output table
- Choose a path over its columns to produce output
- Most likely (give me one answer!)
- Probabilistic / uniform (check veracity later)
- Temperature parameter (sliding scale of likely vs. uniform)

Softmax: why / what

- Vector (row or column) should add up to 1 , like probabilities
- For each value
- Exponentiate
- All positive values
- Subtract largest value
- All negative, except largest, which is now 0
- Avoids float overflows on division
- Divide by sum
- Positive again
- Adds up to 1

Let's go do ity

Bibliography

Resources

- All credit to Brendan Bycroft
- LLM visualization: https://bbycroft.net/llm
- Visualization project: https://github.com/bbycroft/llm-viz/tree/main/src/llm

