BasisTech

Studio for startups

Chris Biow Technologist in Residence 25 March 2024

Under the Hood of a Large Language Model

A visual exploration, requiring only basic arithmetic

Based on Brendan Bycroft's LLM Visualization <u>https://bbycroft.net/llm</u>

One time I tried to explain Kerberos to someone. Then we both didn't understand it.

13:00 · 11/21/14

Why Taylor Swift can't authenticate

The Why of Why Things Work

Why should we understand our underlying tech?

- Sheer curiosity
- Comprehend the layers of abstraction
 - Abstraction enables simplified reasoning
 - Simplification loses detail
 - Insight into capabilities and behavior
 - Anticipate risks
 - Lower layers don't matter until they do
 - Ability to analyze and comprehend what goes wrong
 - Understand reasons for costs and performance

Our layers of abstraction for LLMs

- LLM
- Processing steps
 - Embedding
 - Transformer
 - Normalization
- Training
 - Gradient descent, hyperparameters, convergence, grokking
 - Math: calculus, statistics, linear algebra
 - Data: just text, unsupervised
- Inferencing
 - Math: addition, multiplication (square root, logarithm/exponent)
 - Data structures: tables; columns and rows
 - Toy problem
 - reverse-sort tokens in a vocabulary consisting of letters A, B, C
 - C B A B B C → C C B B B A

Abstraction Layer 0: LLMs by parameter size, visualizing structural complexity

GPT-4

1,760 billion parameters

Simplify: 10X 175 billion parameters

Simplify: 1500X

Abstraction Layer 1: Neural Components

Key components of LLM

- 1. Embedding
- 2. Transformer
- 3. Normalization

Embedding

- Input dimensions = vocabulary size (V)
 - English; $V \cong 1M$
 - Toy problem [ABC]; V = 3
- Create a "one-hot" column of Booleans, size V
 - "bottle" = (0, 0, 0, ..., 0, 0, **1**, 0, 0, ... 0)
 - 1M dimensions; invokes the "curse of dimensionality"
 - "B" = (0, **1**, 0)
 - 3 dimensions
- Reduce to convenient (uncursed) dimensions of Real values
 - English \rightarrow ~300 dimensions
 - "bottle" = (0.000183, 0.00690, ..., 0.0152)
 - [ABC] → 48 dimensions
 - B = (0.000343, 0.00234, ..., 0.1436)

Why embeddings?

- Useful semantics in a tractable number of dimensions
 - king man + woman ≅ queen
 - king ≅ König ≅ rey ≅ 国王 [guówáng]
- LLM usage
 - Create table with T columns
 - One for each token of input
 - For each token, look up its embedding
 - Column of length 48 / 300
 - Add the column to token embedding table
 - Also create position embedding table
 - Input embedding: sum token embedding with position embedding

Transformer

- Attention is all you need [v1: June 2017] https://arxiv.org/abs/1706.03762
 - RNN, CNN
 - Language translation application
 - 28.4 BLEU English → German
 - \circ Generalization
 - English constituency parsing (CFG)
 - Lots more!
- Four steps
 - 1. Layer normalization
 - 2. Self-attention
 - 3. Projection
 - 4. Feed-forward,
 - multi-layer perceptron

BasisTech

	Modern LLM	Тоу
Words in vocabulary	~1M	3
Embedding dimensions	~300	48
Context window (tokens)	8–128K	11
Transformers	~150	3
Attention heads	9,216	3 x 3
Parameters	1.7T	86K

Abstraction Layer 2: Transformer Operation

Transformer Step 1: Layer normalization

- Scale the columns of input embedding
- For each of the T=11 columns (of n=48 rows)
 - Calculate
 - Average = sum() / n = μ
 - Standard Deviation (SD) = $\sqrt{\text{sum}[(x-\mu)^2]/n}$ = σ
 - $\circ \quad \text{For each cell } x{:} (x{-}\mu)/\sigma$
 - Column avg now 0, SD 1
 - \circ Scale with weight (γ), bias (β) values
 - \circ x × y + β
 - $\circ \quad Column \ avg \ now \ \beta; \ SD \ \gamma$
- Proceed to three parallel self-attention heads
 - Breaks up the space into dimensional chunks

Transformer Step 2a: Self-attention computation

- Three precomputed model Weight tables
 - Q(query), K(key), V(value)
 - Each table has a column of bias values
- For each of the T columns of normalized input
 - For each of [Q, K, V] tables
 - Multiply table by column
 - For each row
 - Dot-product(•)
 - pair up elements
 - multiply each pair
 - add up the products
 - Add the bias for that row
 - Creates tables of Query, Key, Value vectors

Transformer Step 2b: Self-attention query execution

- Build the attention matrix A
 - vectors Q K
 - Dot product (scales by similarity of vectors)
 - Looks back over all past input columns/tokens
 - Weights the amount of attention paid to them in context of the current token
- Scale A by √(column length)
- Softmax the columns of A: make the values add up to 1. (See final slide)
- Softmax(A) V vector: produces V Output

Transformer Step 3: Projection

- Stack the V Outputs from each of the multiple attention heads, appending the columns, producing Attention Output
- Apply Projection Weights and Projection Bias to Attention Output
- Add the original input embedding back in to this result, producing Attention Residual
 - Feeding forward the input is another type of normalization
 - Essential for convergence during learning

Transformer Step 4: Multi-Layer Perceptron (MLP)

- Normalize (μ, σ) and bias (β, γ) to scale average & standard deviation
- MLP: 2-layer neural network
 - GELU "activation" function
 - Project with a bias vector, collapsing the heads' output
- Add the MLP input back in
 - Feed forward normalization
- This "MLP residual" is the transformer output

Gaussian Error Linear Unit (GELU) function

Transformer iteration

- Feed from each transformer into the next
- Our nano-gpt uses 3 transformers (each with three heads)
- Transformers specialize as they proceed
 - Lower-level feature extraction

to

• Higher-level abstractions & relationships

Final Normalization

- Input from final transformer layer
- Normalize (μ, σ) and bias (β, γ) to scale avg & SD
- Final multiplication
 - Scales columns back out to the length of the vocabulary
 - Elements are "logits"
 - \circ Log-probability of the token occurring, summing up to 1
- Final Softmax creates output table
- Choose a path over its columns to produce output
 - Most likely (give me one answer!)
 - Probabilistic / uniform (check veracity later)
 - Temperature parameter

(sliding scale of likely vs. uniform)

Sm

Softmax: why / what

- Vector (row or column) should add up to 1, like probabilities
- For each value
 - Exponentiate
 - All positive values
 - Subtract largest value
 - All negative, except largest, which is now 0
 - Avoids float overflows on division
 - Divide by sum
 - Positive again
 - Adds up to 1

Bibliography

- All credit to <u>Brendan Bycroft</u>
- LLM visualization: <u>https://bbycroft.net/llm</u>
- Visualization project: <u>https://github.com/bbycroft/llm-viz/tree/main/src/llm</u>